Motors	
JADELearr Power Your Career	ning
AC & DC Mo	tors
(2017 NEC)
Instructors: Mike Caudle, Gary	Mullis, Ben Wesley
Class Schedule	2:
12:45 PM – 1:45 PM	Part 1
1:45 PM – 1:55 PM	Break
1:55 PM – 3:15 PM	Part 2
3:15 PM – 3:25 PM	Break
3:25 PM – 4:30 PM	Part 3
Full class handouts: <u>www.jadelea</u>	arning.com/ncclass
©JADELearning www.jadelearning.com	1
1	

www.JadeLearning.com - 1-800-443-5233

Motors Motor Rotation Basics • An electromechanical device used to convert electrical energy into rotating mechanical energy • DC types - Series or Shunt wound - Compound (contains both series and shunt windings) - Permanent Magnet • AC types - Single-phase - Three-phase - Three-phase Motor Rotation Basics - Series and shunt windings) - Permanent Magnet • AC types - Single-phase - Three-phase - Three-phase - Three-phase

Motor	Rotation Basics	
Poles	RPM @ 60Hz	
2	3600	
4	1800	1
6	1200	1
8	900	1
10	720	1
12	600	1
		-

Motors What is the difference between FLA and FLC? FLA is found on the nameplate of the motor, FLC is found in the NEC tables Table 430.250 Full-Load Current, Three-Phase Alternating-Current Motors The following va speeds usual for belted motors and motors with normal torque characteristics. The voltages A 25 Hp, 3 phase induction motor will permitted for system voltage ranges of 110 to 120, 220 to 240, 4 have an ampacity of when the Induction-Type Squirrel Cage and Wound Rotor (Amperes) orsepowe voltage is 460 and the Power Factor is .8 115V 200V 208V 230V 460V 575V 1/2 4.4 2.5 2.4 2.2 1.1 0.9 3/4 3.7 3.2 6.4 3.5 1.6 1.3 1 8.4 4.8 4.6 4.2 2.1 1.7 34 x 1.25 = 11/2 12.0 6.9 6.6 6.0 3.0 2.4 2 13.6 7.8 7.5 6.8 3.4 2.7 3 11.0 10.6 9.6 4.8 3.9 17.5 15.2 7.6 6.1 5 16.7 **Power Factor Multiply By** 71/2 25.3 24.2 22 11 9 10 32.2 30.8 28 14 11 15 48.3 46.2 42 21 17 90% 1.1 20 62.1 59.4 54 27 22 68 34 25 78.2 74.8 27 80% 1.25 30 80 40 32 92 88 40 120 114 104 52 41 50 150 143 130 65 52 16 © JADE Learning www.jadelearning.com 16

1								FLA ai	-		
		motors and i	notors with I	normal torque	e characterist	tics. The volta	iges listed ar	ull-load curren e rated motor 0, and 550 to	voltages. Th		
Horsepower		Induction	n-Type Squirr	el Cage and W	/ound Rotor (Amperes)		Synchronou	ıs-Type Unity	Power Facto	r* (Ampere
	115V	200V	208V	230V	460V	575V	2300V	230V	460 V	575 V	2300 V
1/2	4.4	2.5	2.4	2.2	1.1	0.9	-	-	-	-	-
3/4	6.4	3.7	3.5	3.2	1.6	1.3	-	-	_	_	-
1	8.4	4.8	4.6	4.2	2.1	1.7	-	-	-	-	-
11/2	12.0	6.9	6.6	6.0	3.0	2.4	-	-	_	-	-
2	13.6	7.8	7.5	6.8	3.4	2.7	-	-	—	_	-
3	_	11.0	10.6	9.6	4.8	3.9	-	-	_	_	-
5	_	17.5	16.7	15.2	7.6	6.1	-	-	—	-	-
71/2	_	25.3	24.2	22	11	9	_	-	_	_	-
10	—	32.2	30.8	28	14	11	-	-	—	-	-
15	—	48.3	46.2	42	21	17	-	-	—	-	-
20	-	62.1	59.4	54	27	22	-	-	-	-	-
25	_	78.2	74.8	68	34	27	-	53	26	21	-
30	_	92	88	80	40	32	-	63	32	26	-
40	—	120	114	104	52	41	-	83	41	33	-
50	—	150	143	130	65	52	-	104	52	42	-
60	_	177	169	154	77	62	16	123	61	49	12

Μ	0	to	rs	

Table 430.247

 Table 430.247
 Full-Load Current in Amperes, Direct-Current Motors

 The following values of full-load currents* are for motors running at base speed.

FLC is found in this Table for DC Motors

			Armature Vo	ltage Rating [*]		
Horsepower	90 Volts	120 Volts	180 Volts	240 Volts	500 Volts	550 Volts
1/4	4.0	3.1	2.0	1.6	_	_
1/3	5.2	4.1	2.6	2.0	_	_
1/2 3/4	6.8	5.4	3.4	2.7	_	_
3/4	9.6	7.6	4.8	3.8	_	_
1	12.2	9.5	6.1	4.7	_	_
$1\frac{1}{2}$	_	13.2	8.3	6.6	_	_
2	_	17	10.8	8.5	_	_
3	_	25	16	12.2	_	_
5	_	40	27	20	_	_
$7\frac{1}{2}$	—	58	—	29	13.6	12.2
10	_	76	_	38	18	16
15	_	_	_	55	27	24
20	_	_	_	72	34	31
25	_	_	_	89	43	38
30	_	_	_	106	51	46
40	_	—	—	140	67	61
JADELearnin		arning.com				

19

NЛ	otors	
111	ULUIS	

Table 430.249 Full-Load Current, Two-Phase AC Motors (4-Wire) value given. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts.

Motors (4-Wi	re)	Induction-Type Squirrel Cage and Wound Rotor (Amperes)						
	/	Horsepower	115 Volts	230 Volts	460 Volts	575 Volts	2300 Volts	
		1/2	4.0	2.0	1.0	0.8	_	
		3⁄4	4.8	2.4	1.2	1.0		
		1	6.4	3.2	1.6	1.3	—	
		$1\frac{1}{2}$	9.0	4.5	2.3	1.8	_	
	FLC is	2	11.8	5.9	3.0	2.4	—	
	found in	3	—	8.3	4.2	3.3	—	
		5	—	13.2	6.6	5.3		
	this Table	$7\frac{1}{2}$	—	19	9.0	8.0		
	for Two	10	_	24	12	10	_	
	Phase	15	_	36	18	14	—	
		20	_	47	23	19	—	
	Motors	25	—	59	29	24	—	
© JADELearning www.jadelea	rning.com						21	

21

Motors

- Has two voltages 90 degrees apart.
- Alternator is composed of two windings placed at 90 degrees from each other.

They require 2 energized and one grounded wire that work in two phases.

- One increases the current up to what is associated for 240v for the motion
- Other one maintains the fluidity of the current for the use of the motor.

The generators at Niagara Falls installed in 1895 were the largest generators in the world at that time and were two-phase machines.

Two Phase AC Motors

Three-phase systems eventually replaced the original two-phase power systems for power transmission and utilization. There remain few two-phase distribution systems, with examples in Philadelphia, Pennsylvania; many buildings in Center City; and Hartford, Connecticut.

©JADELearning www.jadelearning.com

22

Motors

Table 430.250 Full-Load Current, Three-Phase AC Motors

Our motor is a 20 HP motor with a FLA of 24.5A This Table tells us the FLC is 27 A

	Induction-Type Squirrel Cage and Wound Rotor (Amperes) Synchronous-Type Unity Po Factor* (Amperes)									ower	
Horsepower	115 Volts	200 Volts	208 Volts	230 Volts	460 Volts	575 Volts	2300 Volts	230 Volts	460 Volts	575 Volts	2300 Volts
$\frac{1}{2}$	4.4	2.5	2.4	2.2	1.1	0.9	_	_	_	_	_
3/4	6.4	3.7	3.5	3.2	1.6	1.3	_	_	_	_	_
1	8.4	4.8	4.6	4.2	2.1	1.7	_	_	_	_	_
$1\frac{1}{2}$	12.0	6.9	6.6	6.0	3.0	2.4	_	_	_	_	_
2	13.6	7.8	7.5	6.8	3.4	2.7	_	_	_	_	_
3		11.0	10.6	9.6	4.8	3.9	_	_	_	_	_
5	_	17.5	16.7	15.2	7.6	6.1	_	_	_		_
$7\frac{1}{2}$	_	25.3	24.2	22	11	9	_	_	—	—	—
10	_	32.2	30.8	28	14	11	_	_	_	_	_
15	_	48.3	46.2	42	21	17	_	_	_	_	_
20	_	62.1	59.4	54	27	22	_	_	_		_
25	_	78.2	74.8	68	34	27	_	53	26	21	_
30	_	92	88	80	40	32	_	63	32	26	_
40	—	120	114	104	52	41	—	83	41	33	—
© JADE Lea	arning	www.jade	elearning	.com							23

23

Motors

FLA vs. FLC

The motor full-load current (FLC) ratings listed in Tables 430.247, 430.248, and 430.250 are used to determine:

- 1. Conductor ampacity [430.22].
- 2. Branch circuit short circuit and ground fault overcurrent device size [430.52 and 430.62].
- 3. Ampere rating of disconnecting switches [430.110].

The nameplate full-load ampere (FLA) rating is the current the motor draws while producing its rated horsepower load at its rated voltage, based on its rated efficiency and power factor. The current the motor actually draws depends on the actual voltage at the motor terminals and the load the motor is trying to drive. The current increases if the load increases or if the voltage decreases.

1. The FLA will be used to size our overloads.

©JADELearning www.jadelearning.com

Motors											
Та	ble 43		ur moto	or is a 20) HP mo	otor wit	hree- l h a FLA o C is 27 A		AC N	lotor	S
	I	nduction-T	ype Squirre	l Cage and	Wound Ro	tor (Amper	es)	Sync	hronous-Ty Factor* (pe Unity P Amperes)	ower
Horsepower	115 Volts	200 Volts	208 Volts	230 Volts	460 Volts	575 Volts	2300 Volts	230 Volts	460 Volts	575 Volts	2300 Volts
1/2	4.4	2.5	2.4	2.2	1.1	0.9	_	_	_	_	_
3/4	6.4	3.7	3.5	3.2	1.6	1.3	_	_	_	_	_
1	8.4	4.8	4.6	4.2	2.1	1.7	_	_	_	_	_
$1\frac{1}{2}$	12.0	6.9	6.6	6.0	3.0	2.4	_	_	_	_	_
2	13.6	7.8	7.5	6.8	3.4	2.7	_	_	_	_	_
3	_	11.0	10.6	9.6	4.8	3.9	_	_	_	_	_
5	_	17.5	16.7	15.2	7.6	6.1	_	_	_	_	_
$7\frac{1}{2}$	—	25.3	24.2	22	11	9	—	—	—	—	—
10	_	32.2	30.8	28	14	11	_	_	_	_	_
15	_	48.3	46.2	42	21	17	_	_	_	_	_
20	_	62.1	59.4	54	27	22	_	_	_	_	_
25	_	78.2	74.8	68	34	27	_	53	26	21	_
30	_	92	88	80	40	32	_	63	32	26	_
40	_	120	114	104	52	41	_	83	41	33	

©JADELearning www.jadelearning.com

26

Motors
FLA vs. FLC
Our motor is a 20 HP 3 phase AC motor. The FLA is 24.5 found on the nameplate. The FLC is found in Table 430.250.
Using Table 430.250 A 20HP, 3 phase, 460-volt motor will draw amps full load current.
How many amps did the nameplate say?
Section 430.22 tells us we now have to
We must now go to Table 310.15(B)16 and find a conductor with insulation of THWN that can carry our motor load, the <i>terminals are rated at 60 degrees Celsius</i> , the size is
© JADELearning www.jadelearning.com 28
28

	_		Or Size - e Rating of Cond		•	/	
	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)	
Size AWG or	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
kcmil		COPPER		ALUMINUM C	OR COPPER-CLA	D ALUMINUM	Size AWG or kcm
18**		_	14	_	—	_	_
16**	-	—	18	—	_	_	_
14**	15	20	25				
12**	20	25	30	15	20	25	12**
10**	30	35	40	25	30	35	10**
8	40	50	55	35	40	45	8
6	55	65	75	40	50	55	6

Motors
FLA vs. FLC
Our motor is a 20 HP 3 phase AC motor. The FLA is 24.5 found on the nameplate. The FLC is found in Table 430.250.
Using Table 430.250 A 20HP, 3 phase, 460-volt motor will draw amps full load current.
How many amps did the nameplate say?
Section 430.22 tells us we now have to
We must now go to Table 310.15(B)16 and find a conductor with insulation of THWN that can carry our motor load, the <i>terminals are rated at 60 degrees Celsius</i> , the size is
©JADELearning www.jadelearning.com 30
30

Motors						
			Name	plate	Inform	ation
	AC M	OTOR		MADE	IN USA	
	O TYPE (ENCL.)	INSUL. CLASS	IDI	ENTIFICATION	NO.	
324T	TEFC	F		8779787246		
④ нр	5 RPM		🖸 FLA	8 HZ.	9 SF	
25	1760	230 / 460	60 / 30	60	1.15	
CODE LTR	PHASE		AMB.	🕐 ві	EARINGS	
н	3	CONT.	40°C	DE	ODE	
"	2	CONT.	40-0	6312	6311	
			1. Frame			
			numbering frame sizes	system. have bee	The system	andardized with a uniform frame size was developed by NEMA and specific to standard motor ratings based on red.
©JADELea	rning ww	/w.jadelear	ning.com			31

	AC M	OTOR		MAD	E IN USA	The 7 most common types of enclosures are:
1 FRAME	O TYPE (ENCL.)	INSUL. CLASS	ID	ENTIFICATION	I NO.	1.Open Drip Proof (ODP) 2.Totally Enclosed Fan Cooled (TEFC)
324T	TEFC	F		877978724	5	3.Totally Enclosed Non-Ventilated (TENV
4 нр	5 RPM		🕑 FLA	8 HZ.	9 SF	 4.Totally Enclosed Air Over (TEAO)
25	1760	X30 / 460	60 / 30	60	1.15	5.Totally Enclosed Wash down (TEWD).
CODE LTR	D PHASE		AMB.	()	BEARINGS	6.Explosion-proof enclosures (EXPL) 7.Hazardous Location (HAZ)
н	3	CONT	40°C	DE	ODE	
н	3	CONT.	40°C	6312	6311	
	2. Ту	pe/Enclos	ure			
	This	designatio	n, often sh	own as "E	NCL". On t	he nameplate, classifies the motor as it
		-				he nameplate, classifies the motor as i d its method of cooling.

otors							
			Nam	eplate	e Info		
	A	AC MOTOR		MADE IN USA			
1 FRAME			IDENTIFICATION NO.				
324T	TEFO	: F 🍾	8779787246				
4 нр	6 RPN		O VOLTS O FLA O HZ. O				
25	1760	230 / 460	60/30 60 1.15				
CODE LTR	Ф рн.	ASE 🖸 DUTY	(B) AMB. (G) BEARINGS				
н	3	CONT.	40°C	C DE ODE 6311			
	·	3. INSUL. Cl	ass / Insul	lation Clas	S		
		An industry Insulation is heat genera of the moto	crucial in ted at full	a motor. y loaded c	This dete onditions		
JADE Le	arning	www.jadelea	arning.com	ı			

Insulation	1.15 SF	1.0 SF
Class		
Α	115°C	105°C
В	140°C	130°C
F	165°C	155°C
Н		180°C

Motors						
			Nar	nepla	ate Inf	ormation
	AC M	OTOR		MADE	IN USA	
	O TYPE (ENCL.)	3 INSUL. CLASS	IDENTIFICATION NO.			
324T	TEFC	F		8779787246		
🕘 нр 🔪	6 RPM		🖸 FLA	8 HZ.	9 SF	
25	1760	230 / 460	60 / 30	60	1.15	
CODE LTR	1 RHASE	🕑 DUTY	AMB.			
н	3	CONT.	40°C	DE	ODE	
н	3	CONT.	40°C	6312	6311	
	4. Horsep	ower				
t S	torque rec standardiz horsepow	quired for ed NEMA er require	the load a table of r ments fal	at rated s notor ho I betwee	peed. It i rsepower n two stai	echanical output rating, its ability to deliver the s usually given in "HP" on the nameplate. The ratings run from 1 to 450 HP. When application ndardized values, the larger size is usually d in KW. (746 watts per motor horsepower)
JADE Le	earning	www.jadel	earning.co	om		35

			Nai	mepla	ate In	formation
	AC M	OTOR		MAD	E IN USA	Frame Stat
1 FRAME	O TYPE (ENCL.)	INSUL. CLASS	ID	ENTIFICATION	NO.	Enu bi acket
324T	TEFC	F		8779787246		Asser
4 нр	S RPM		🖸 FLA	8 нz.	9 SF	Shaft
25	1760	230 / 460	60 / 30	60	1.15	
CODE LTR	1 PHASE		В АМВ.			
			4000	DE ODE 6312 6311		Bearings
Н	3	CONT.	40°C			bearings to the second se
			5. RPIV	I – Revol	utions Pe	er Minute
			speed	under fu	ll-load co	ons Per Minute) of the motor is the approximat onditions, when the voltage and frequency are luction motor's speed is always less than
			synchr	onous sp	eed and	drops off as load increases.

otors						
			Nai	mepla	ate Inf	ormation
	AC M	IOTOR		MAD	E IN USA	1
1 FRAME	O TYPE (ENCL.)	INSUL. CLASS	ID	ENTIFICATION	I NO.	
324T	TEFC	F		8779787246	5	+
4 нр	5 RPM		🔊 FLA	8 HZ. 9 SF		
25	1760	230 / 460	60 / 30	60	1.15	
CODE LTR	PHASE	DUTY	🚯 АМВ.			
н	2	3 CONT.	40°C	DE	ODE	AC Voltage
н	3	CONT.	40°C	6312 6311		n
		6. Volt	age			
		yield o	ptimal pe	rforman	ce. Name	which the motor is designed to operate and plate defined parameters for the motor such a d current are at rated voltage and frequency.
JADELe	earning	www.jade	learning.co	om		37

			inar	mepia	ate inte	ormation	
	AC M	OTOR		MADE	IN USA		
1 FRAME	O TYPE (ENCL.)	INSUL. CLASS	ID	ENTIFICATION	NO.	The choice of 60 Hz for the AC line frequency is a win for Nikola	
324T	TEFC	F		8779787246			
4 нр	S RPM		🖸 FLA	8 HZ. 9 SF		Tesla's engineering, but 110 V is	
25	1760	230 / 460	60 / 30	≠ 60	1.15	an example of compromise for	
CODE LTR			🚯 АМВ.	🚯 ві	EARINGS	Edison's business interests.	
Н	3 CONT. 40%		ODE 6311				
	8. H	IZ - Hertz					
	in H	lertz (Hz,	cycles per	second).	. In North	or is designed to operate at and is represented America and Canada, this frequency is 60 Hz requency may be 50 or 60 Hz.	
	earning		earning.co			39	

Motors Nameplate Information 1,000,00 AC MOTOR MADE IN USA INSUL. CLASS O TYPE (ENCL.) 1 FRAME IDENTIFICATION NO. CLASS F AVERAGE EXPECTED LIFE-HOURS 100,000 324T TEFC 8779787246 4 HP 6 RPM 🕤 FLA 8 HZ. 9 SF CLASS A-CLASS H 10,000 1760 230 / 460 60/30 60 × 1.15 25 CODE LTR 1 BEARINGS PHASE DUTY B AMB. CLASS B 1,000 ∕DE ODE Н 3 CONT. 40°C 6312 6311 100 80 100 120 140 160 180 200 220 240 TOTAL WINDING TEMPERATURE – Degrees C 10°C HALF LIFE RULE 9. SF – Service Factor Motor Service Factor (SF) is the percentage of overloading the motor can handle for short periods when normally within the correct voltage tolerances. 40 © JADE Learning www.jadelearning.com

			Nar	nepla	ite Inf	ormation	NEMA Code Letter	kVA/HP with locked rotor	Approximate Mid-Range Value
						T	A	0 - 3.14	1.6
	AC MOTOR MADE IN USA				IN USA		В	3.15 - 3.55	3.3
	71/05					t	С	3.55 - 3.99	3.8
FRAME	O TYPE (ENCL.)	INSUL.	ID	ENTIFICATION I	NO.		D	4.0 - 4.49	4.3
	(ENCL.)	CLASS				1	E	4.5 - 4.99	4.7
324T	TEFC	F		8779787246			F	5.0 - 5.59	5.3
-	-	-	-	-	-	+	G	5.6 - 6.29	5.9
🕽 нр	5 RPM	6 VOLTS	🕖 FLA	🚯 HZ.	9 SF		н	6.3 - 7.09	6.7
						ł	J	7.1 - 7.99	7.5
25	1760	230 / 460	60 / 30	60	1.15	1	ĸ	8.0 - 8.99	8.5
CODE		0	•			T	L	9.0 - 9.99	9.5
LTR	PHASE	🕐 DUTY	1 AMB.	🚺 🚺 ВЕ	EARINGS		M	10.0 - 11.19	10.6
					ODE	ł	N P	11.2 - 12.49 12.5 - 13.99	11.8 13.2
	3	CONT	40°C	DE		1	R	14.0 - 15.99	15.0
× H	3	CONT.	40°C	6312	6311	T	S	16.0 - 17.99	15.0
0. Code	Letter – L	ocked Ro	tor	-	• •				
nany tim nportan he start	es greate t on some inrush cu	r than the e installati	value of ons becau been stan	the Full-L use it can idardized	oad Curro cause a v and defir	ey create an inrus ent. The value of oltage dip that m led by a series of	this high c ight affect	current can cother equi	be pment.

				Nar	mepla	te Inf	ormation
		AC M	OTOR		MADE	IN USA	
1 FRAME	0	TYPE (ENCL.)	3 INSUL. CLASS	IDENTIFICATION NO.			
324T		TEFC	F		8779787246		
4 нр	6	RPM		🕑 FLA	A 🚯 HZ. 🥹 SF		
25	1760 230 / 460 60 / 30		60 / 30	60	1.15		
CODE LTR			🕐 DUTY	B AMB.	🙆 BE	ARINGS	~ 1 2 . 2
		2	CONT. 40°C	DE	ODE		
Н		3	CONT.	40°C	6312	6311	
		12. [Duty				
		expr to re not l	essed in n ach temp	ninutes). erature e gh to read	Continuo quilibriun ch temper	ous Duty n n. Interm rature equ	uous, intermittent, or special duty (typically notors work at a constant load for enough time ittent duty motors work at a constant load, bu uilibrium and the off period is long enough for re.

AC MOTOR N					E IN USA	
FRAME	O TYPE (ENCL.)	INSUL.	ID	ENTIFICATION	NO.	AMBIENT WEATHER TEMPERATURE
324T	TEFC	F	8779787246			11 100 100 100 100 100 100 100 100 100
4 нр	S RPM		🕤 FLA	8 нz.	9 SF	ambient
25	1760	230 / 460	60 / 30	60	1.15	temperature
CODE LTR	D PHASE	DUTY 🕑	В АМВ.	BEARINGS		current air temperature
			4000	DE	ODE	
Н	3	CONT.	40°C	6312	63 1 1	
				6312	6311	
		13. A	MB – Am	nbient Te	mperature	
					•	ire at which the motor can operate and stil ion class at the maximum temperature rise

lotors						
			Nai	mepla	ite Inf	ormation
	AC M	OTOR		MADE	IN USA	
1 FRAME	2 TYPE (ENCL.)	INSUL. CLASS	IDENTIFICATION NO.			
324T	TEFC	F		8779787246		E Contractioner and the second
4 HP	6 RPM		🖸 FLA	8 HZ. 9 SF		
25	1760	230 / 460	60 / 30	60	1.15	
CODE LTR	1 PHASE	🕑 DUTY	В АМВ.	BEARINGS		
			DE	ODE		
Н	3	CONT.	40°C	6312	6311	
		14.	Bearings			-
		on b high	bearings. I speed, h	Many spe igh tempe	ecial bear erature, h	it, many manufacturers supply nameplate data ngs are applied in motors for reasons such as igh thrust, or low noise. The types of bearings eeve, and Roller.
JADEL	earning	www.jadel	learning.co	om		45

Motors

Table 430.52 Maximum Protective Devices	n Rating or Sett		JSE Size Circuit Short-Circuit a	and Ground-Fault	150 HP Motor. FLA is 163 Amps
		Percentage of I	Full-Load Current		
Type of Motor	Nontime Delay Fuse ¹	Dual Element (Time-Delay) Fuse ¹	Instantaneous Trip Breaker	Inverse Time Breaker ^e	Table 430.52 Requires us to use
Single-phase motors	300	175	800	250	the FLC which is
AC polyphase motors other than wound- rotor	300	175	800	250	found in Table 430.250.
Squirrel cage — other than Design B energy-efficient	300	175	800	250	
Design B energy- efficient	300	175	1100	250	
Synchronous ³	300	175	800	250	
Wound-rotor	150	150	800	150	
DC (constant voltage)	150	150	250	150	

47

			Fuse	Size -	- Tab	le 430	D.250 150 HP Motor
Horsepower	115 Volts	200 Volts	208 Volts	230 Volts	460 Volts	575 Volts	2: FLA is 163 Am
1/2	4.4	2.5	2.4	2.2	1.1	0.9	
3/4	6.4	3.7	3.5	3.2	1.6	1.3	
1	8.4	4.8	4.6	4.2	2.1	1.7	
$1\frac{1}{2}$	12.0	6.9	6.6	6.0	3.0	2.4	
2 3	13.6	7.8	7.5	6.8	3.4	2.7	From Table 430.250 our FLC
3	_	11.0	10.6	9.6	4.8	3.9	is 180 Amps.
5		17.5	16.7	15.2	7.6	6.1	is too Amps.
$7\frac{1}{2}$	_	25.3	24.2	22	11	9	
10	_	32.2	30.8	28	14	11	
15	_	48.3	46.2	42	21	17	From Table 430.52 our
20	_	62.1	59.4	54	27	22	1750/
25		78.2	74.8	68	34	27	multiplier is 175%.
30	_	92	88	80	40	32	
40	—	120	114	104	52	41	100 Among v 1 75
50	_	150	143	130	65	52	— 180 Amps x 1.75 =
60	_	177	169	154	77	62	
75	_	221	211	192	96	77	
100	_	285	273	248	124	99	
125		359	343	312	156	125	
150	_	414	396	360	180	144	
JADE Learr	ing ww	w.jadelea	arning.co	n			4

www.JadeLearning.com - 1-800-443-5233

Motors	
Fuse Size	
(B) Overcurrent Devices Rated 800 Amperes or Less. The next higher standard overcurrent device rating (above the ampacity of the conductors being protected) shall be permitted to be used, provided all of the following conditions are met:	
(1) The conductors being protected are not part of a branch circuit supplying more than one receptacle for cord-and plug-connected portable loads.	
(2) The ampacity of the conductors does not correspond with the standard ampere rating of a fuse or a circuit breaker without overload trip adjustments above its rating (but that shall be permitted to have other trip or rating adjustments).	
(3) The next higher standard rating selected does not exceed 800 amperes.	
© JADELearning www.jadelearning.com 49	9
9	

		150 HP Moto FLA is 163 An			
	A) Standard A Circuit Brea		ngs for Fuses	and	
	Standa	rd Ampere R	atings		_
15	20	25	30	35	_
40	45	50	60	70	– From Table 430.52 our
80	90	100	110	125	multiplier is 175%.
150	175	200	225	250	
300	350	400	450	500	 180 Amps x 1.75 =
600	700	800	1000	1200	·
1600	2000	2500	3000	4000	_
5000	6000	_	_		_

Motors	;									
					Fu	se S	ize	•		A 350 Amp Fuse for a
	RELI, ELEC	ANCE TRIC		SEVERE		Y A.C	MOT	ORS		motor that has an FLA of 163 Amps?
	HP 150 RPM 3577	G 001 YW VOLTS 460 AMPS 163	10000	PHASE 3 HZ 60	DESIGI AMB	040°C	TYPE SF	1.15	U.S.	What is the fuse protecting?
	OPPLE BEARING 65BC03 OPPLE BEARING 65BC03			POWER 89	ENCL	CONT TEFC	CODE	F G 6.2	া বনো	• Not the Motor!
\$				NEMA NOM/CS	SA QUO	GUARANTEEL EPHOIENCY TED EFF A	90	5.8 LOAD	100-1+I	• Not the Conductor!
		III III III III III III III IIIIIIIIII			DIGHT	1844 LB	S.	U.S.A.		 Only protecting against Ground Faults & Short Circuits!
© JA	DELearning	www.jadele	arnin	g.com						51

Motors	
Setting Overloads	
Continuous duty, separate overload device as a percentage of nameplate data:	
 Motors with a marked service factor 1.15 or greater 	
- 125%	
 Motors with a marked temperature rise 40°C or less 	
- 125%	
All other motors	
- 115%	
©JADELearning www.jadelearning.com	52
52	

<section-header><text><text><text><text><page-footer>

		RTER DUTY CATALOG# H5T2BC	This moto
First let us	↓ ID#		_ ♥ will be
	HZ RPM HP	TORQUE VOLTS AMPS	controlled
discuss	60 1765 5	14.9 460 7.0	controlled
the motor	120 3525 5 3 90 0.25	7.4 460 6.6 14.9 23 7.0	
design!	VOLTS 230/460 FL NLA 7.7/3.9 NEMA NOI EFFICIENC MAX SAFE 4000 WT. 110 L SHAFT END BRG 6307-J/C3 R1 1.46 R2 0.86 X1 2.95	OPP END BRG 6206-2Z-J/C3	A 191252

Motors Fuse Size - Table 430.250 115 Volts 200 Volts 208 Volts 230 Volts 460 Volts 575 Volts 23 Horsepower 0.9 1/2 4.42.52.42.21.13/4 3.73.53.2 1.36.41.64.2 1.71 8.4 4.84.62.1 $1\frac{1}{2}$ 12.06.96.6 6.03.02.49 13.67.87.56.83.42.73 11.09.6 4.83.9 10.6517.516.715.27.66.1 $7\frac{1}{2}$ 25.322 11 9 24.2 32.2 1030.82814 11 48.3 46.242 21 17 152062.159.45427 22 78.274.8 272568 34 30 92 88 80 4032 120 114104 5240 _ 41 143 52501501306560 169 77 62 177 15475221211192 96 77 99 100 285273124248125359 343 312 156125150414 396 360 18014462 © JADELearning www.jadelearning.com

		INVER	TER DUTY			
	EL# FG03	INVER	CATALOG#	# H5T2BC		Φ
HZ	RPM	HP	TORQUE	VOLTS	AMPS	206
60	1765	5	14.9	460	7.0	NEMAMG1 PART 31
120	3525	5	7.4	460	6.6	3.0 <u>1</u>
3 FR 184T	90 C TYPE (0.25	14.9 NCL TEFC	23	7.0 UTY CONT	∎ ¶
R1 1.46	000 WT. 307-J/C3 R2 0.86	X1 2.95	5. 50 K PP ND BRG 6206- X2 5.08 ND DOMESTIC C R	XM 7	8 40 C 0.08 IPS 2.8	<u>رد</u>

	_		Or Size - e Rating of Cond		•	<u> </u>	
	60°C (140°F)						
Size AWG or	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
kcmil		COPPER		ALUMINUM C	OR COPPER-CLA	AD ALUMINUM	Size AWG or kcn
18**	_	_	14		_	_	_
16**			18	—	-	—	—
14^{**} 12**	15 20	20	25 30	15	20	25	12**
12.00	30	25 35	30 40	15 25	30	25 35	12** 10**
10**	50	50 50	40 55	35	30 40	55 45	8
10** 8	40	50					

Motors	
Calculate branch circuit size, overcurrent protection,	
motor overload device size, and thermal protection.	
 Table 430.52 will provide information about the proper size of molded case breaker we need. 	
 We had a full load current of 7.6 amps according to Table 	
430.250. We must increase this number by:%.	
 The calculated number is amps. 	
 Now we must look at 240.6 and locate the appropriate 	
overcurrent device in accordance with 430.52 (C) (1) Exc. #1.	
The size of the breaker is	
© JADELearning www.jadelearning.com	70
©JADELearning www.jadelearning.com	

motor ov	verload devi ximum Rating or Sett	cuit size, ove ice size. and ing of Motor Branch-G	I thermal p	rotectio
		Percentage of I	Full-Load Current	
Type of Motor	Nontime Delay Fuse ¹	Dual Element (Time-Delay) Fuse ¹	Instantaneous Trip Breaker	Inverse Time Breaker
Single-phase moto	ors 300	175	800	250
AC polyphase mo other than wou rotor		175	800	250
Squirrel cage — o than Design B energy-efficient	ther 300	175	800	250
Design B energy- efficient	300	175	1100	250
Synchronous ³	300	175	800	250
Wound-rotor	150	150	800	150
DC (constant volt	age) 150	150	250	150

Motors						
Calculate branch circuit size, overcurrent protection, motor overload device size, and thermal protection.						
motor overload device size, and thermal protection.						
• Table 430.52 will provide information about the proper size of						
molded case breaker we need. We had a full load current of 7.6 amps according to Table 430.250.						
• We had a full load current of 7.6 amps according to Table						
430.250. We must increase this number by:%.						
The calculated number is amps.						
 Now we must look at 240.6 and locate the appropriate 						
overcurrent device in accordance with 430.52 (C) (1) Exc. #1.						
The size of the breaker is						
©JADELearning www.jadelearning.com	72					
			Fuse Siz	e		
-----------------	-------------------------------	--	--	-------------------	---	--
	A) Standard A Circuit Brea		ngs for Fuses	and		
		urd Ampere R	atings		=	
$\frac{15}{40}$	$20 \\ 45$	$\begin{array}{c} 25\\ 50 \end{array}$	30 60	35 70	_	
80 150	$90 \\ 175$	$\frac{100}{200}$	$\frac{110}{225}$	$\frac{125}{250}$	_	
300 600	350 700	400 800	$\begin{array}{c} 450 \\ 1000 \end{array}$	$500 \\ 1200$	_	
1600 5000	2000 6000	2500	3000	4000	_	
DELearnin		earning.com			-	

Motors	
Calculate branch circuit size, overcurrent protection,	
motor overload device size, and thermal protection.	
• Table 430.52 will provide information about the proper size of	
molded case breaker we need. We had a full load current of 7.6 amps according to Table 430.250.	
 We had a full load current of 7.6 amps according to Table 	
430.250. We must increase this number by:%.	
 The calculated number is amps. 	
 Now we must look at 240.6 and locate the appropriate 	
overcurrent device in accordance with 430.52 (C) (1) Exc. #1.	
The size of the breaker is	
©JADELearning www.jadelearning.com	74
© JADELearning www.jadelearning.com	

otors		
	Size the Overload	ls
• Let's begin wit	th 430.32 (A) (1)	
shall be selec	verload device that is responsive to ted to trip or shall be rated at no m e motor nameplate full load curren	nore than the following
• Our motor had	d a FLA on the nameplate of 6.7 am	ans. The service factor of
	s 1.0, based on this, our overloads	•
our motor was	•	•
our motor was	s 1.0, based on this, our overloads ult in a heater size of Motors with a marked service factor	•
our motor was	s 1.0, based on this, our overloads ult in a heater size of	will be% of 6.7.
our motor was	s 1.0, based on this, our overloads ult in a heater size of Motors with a marked service factor 1.15 or greater Motors with a marked temperature	will be% of 6.7.

	Тур	es of Moto	ors	
Motor	Start	Speed	Size	Typical
Type Torque Control Horsepower Applications				
		Single Phase		
Split Phase	Low	Constant	Fractional	Small Pumps
Capacitor Start	Medium	Constant*	Up to 3 HP	Refrigerators
Perm. Split Cap	Very Low	Constant*	Up to 5 HP	Blowers
Two Value Cap.	High	Constant*	Up to 10 HP	Compressors
Repulsion	High	Variable	Up to 3 HP	Printing Press
Rep. Start Ind. Run	High	Constant	Up to 10 HP	Compressors
Repulsion Induction	High	Constant	Up to 10 HP	Pumps
Shaded Pole	Very Low	Constant*	Fractional	Fans
Universal	High	Variable	Fractional	Power Tools
*Multiple fixed sp	peeds available t	hrough senarate w	indings or conseq	uent noles.

		Ту	pes of Moto	ors			
Motor Start		Start	Speed	Size	Typical		
Т	уре	Torque	Control	Horsepower	Applications		
			Three Phase				
		Low/High	Constant*	Constant* All Sizes Machin			
		Medium	Variable To 1,000 HP		Cranes		
Synchro	nous	Very Low	Constant* To 5,000 HP Slow				
		Torque	Percent of Fu		1e III		
ŀ		Low		w 100% - 200%			
Medium			200% - 300%				
High		gh	300% - 400%				
Very High		High	Above 400%				

	Ту	pes of Moto	rs	
Motor Type	Start Torque	Speed Control	Size Horsepower	Typical Applications
Series	Very High	Variable	Up to 200 HP	Traction Loads
Shunt	Medium	Constant/Adjustable	Up to 200 HP	Elevators
Compound	High	Constant/Variable	Up to 200 HP	Conveyors
Permanent Magnet	Medium	Constant/Adjustable	Up to 5 HP	Golf Carts
	rting Torque	Percent of Full Below 7		
	Very Low Low	100% - 2		_
	Medium	200% - 3		
	High	300% - 4		
	Very High	Above	400%	

www.JadeLearning.com - 1-800-443-5233

 Motors

 Three Phase AC Motors

 Branch Circuit Example

 • 25 HP (Squirrel Cage), 460 VAC, 60 HZ, 3 PH, 30 FLA (Full-Load Amps), Design B, SF 1.15, FLC (Full-Load Current) = 34 A.

 • Branch Circuit Conductor Sizing – 125% of FLC, 34 x 125% = 42.5; #8 AWG (Minimum)

 • Branch Circuit OCP Sizing – 175% of FLC (Dual Element Fuse), 34 x 175% = 59.6, 60 amps (Maximum)

	TABLE 430.7(B) Lock	ed-Rotor Indicating Code Letters	
_	Code Letter	Kilovolt-Amperes per Horsepower with Locked Rotor	
A specification	А	0-3.14	
which indicates the	В	3.15-3.54	
	С	3.55-3.99	
current amperage	D	4.0-4.49	
being drawn by an	Е	4.5-4.99	
•	F	5.0-5.59	
electric motor when	G 5.6–6.29		
it is "locked up", i.e.,	Н	6.3-7.09	TEFC CODE G
• • • •	J	7.1–7.99	NEMA NOM 96.2
not turning.	K L	8.0–8.99 9.0–9.99	CHEMBRON COM
-	M	10.0-11.19	GUARANTEED 95.8
	N	11.2–12.49	ED EFF AT 100% LOAD
	Р	12.5-13.99	
	R	14.0-15.99	1844 LBS.
	S	16.0–17.99	
	Т	18.0-19.99	MADE IN THE U.S.A.
	U	20.0-22.39	
	V	22.4 and up	

Motors	
Calculation Example	
A 20-hp, 460-V, 3-phase motor has a nameplate kilovolt-ampere code letter G Determine the maximum locked-rotor current for this motor.	
©JADELearning www.jadelearning.com	4

Motors

Motor Disconnects

Part IX. Disconnecting Means

430.101 General. Part IX is intended to require disconnecting means capable of disconnecting motors and controllers from the circuit.

430.102 Location.

(A) Controller. An individual disconnecting means shall be provided for each controller and shall disconnect the controller. The disconnecting means shall be located in sight from the controller location.

Exception No. 2: A single disconnecting means shall be permitted for a group of coordinated controllers that drive several parts of a single machine or piece of apparatus. The disconnecting means shall be located in sight from the controllers, and both the disconnecting means and the controllers shall be located in sight from the machine or apparatus.

©JADELearning www.jadelearning.com

Motors	
	Motor Disconnects
Part IX. Discon	necting Means
430.101 Gener	al. Part IX is intended to require disconnecting means capable of
disconnecting	motors and controllers from the circuit.
430.102 Locati	on.
(A) Controller.	An individual disconnecting means shall be provided for each controller
and shall disco	nnect the controller. The disconnecting means shall be located in sight
from the contro	oller location.
Exception No. 3:	The disconnecting means shall not be required to be in sight from valve
	(VAM) assemblies containing the controller where such a location introduces
	rreased hazards to persons or property and conditions (a) and (b) are met.
• •	tuator motor assembly is marked with a warning label giving the location of the
disconnecting m	
	ecting means is lockable in accordance with 110.25.
© JADE Learning	www.jadelearning.com 99

Motors

(B) Motor. A disconnecting means shall be provided for a motor in accordance with (B)(1) or (B)(2).

(1) Separate Motor Disconnect. A disconnecting means for the motor shall be located in sight from the motor location and the driven machinery location.

(2) Controller Disconnect. The controller disconnecting means required in accordance with 430.102(A) shall be permitted to serve as the disconnecting means for the motor if it is in sight from the motor location and the driven machinery location.

Exception to (1) and (2): The disconnecting means for the motor shall not be required under either condition (a) or condition (b), which follow, provided that the controller disconnecting means required in 430.102(A) is lockable in accordance with 110.25. (a) Where such a location of the disconnecting means for the motor is impracticable or introduces additional or increased hazards to persons or property

©JADELearning www.jadelearning.com

Motors

430.103 Operation. The disconnecting means shall open all ungrounded supply conductors and shall be designed so that no pole can be operated independently. The disconnecting means shall be permitted in the same enclosure with the controller. The disconnecting means shall be designed so that it cannot be closed automatically.

430.104 To Be Indicating. The disconnecting means shall plainly indicate whether it is in the open (off) or closed (on) position.

430.105 Grounded Conductors. One pole of the disconnecting means shall be permitted to disconnect a permanently grounded conductor, provided the disconnecting means is designed so that the pole in the grounded conductor cannot be opened without simultaneously disconnecting all conductors of the circuit.

©JADELearning www.jadelearning.com

Motors	
Feeder and Branch Circuit Sizes	
430.24 Several Motors or a Motor(s) and Other Load(s). Conductors supplying severate motors, or a motor(s) and other load(s), shall have an ampacity not less than the sur of each of the following:	
(1) 125 percent of the full-load current rating of the highest rated motor, as determined by 430.6(A)	
(2) Sum of the full-load current ratings of all the other motors in the group, as determined by 430.6(A)	
(3) 100 percent of the noncontinuous non-motor load	
(4) 125 percent of the continuous non-motor load.	
© JADELearning www.jadelearning.com	108
108	

Motors

430.25 Multimotor and Combination-Load Equipment. The ampacity of the conductors supplying multimotor and combination load equipment shall not be less than the minimum circuit ampacity marked on the equipment in accordance with 430.7(D). Where the equipment is not factory-wired and the individual nameplates are visible in accordance with 430.7(D)(2), the conductor ampacity shall be determined in accordance with 430.24.

www.jadelearning.com

109

© **JADE**Learning

Motors

430.26 Feeder Demand Factor. Where reduced heating of the conductors results from motors operating on duty-cycle, intermittently, or from all motors not operating at one time, the authority having jurisdiction may grant permission for feeder conductors to have an ampacity less than specified in 430.24, provided the conductors have sufficient ampacity for the maximum load determined in accordance with the sizes and number of motors supplied and the character of their loads and duties.

© JADE Learning www.jadelearning.com

Motors

Motor Control

(A) Stationary Motor of 1/8 Horsepower or Less. For a stationary motor rated at 1/8 hp or less that is normally left running and is constructed so that it cannot be damaged by overload or failure to start, such as clock motors and the like, the branch circuit disconnecting means shall be permitted to serve as the controller.

(B) Portable Motor of 1/3 Horsepower or Less. For a portable motor rated at 1/3 hp or less, the controller shall be permitted to be an attachment plug and receptacle or cord connector.

©JADELearning www.jadelearning.com

111

Motors									
Motor Control	AC Motor Data								
(1) Horsepower Ratings. Controllers, other than inverse time circuit breakers and molded case switches, shall have horsepower ratings at the application voltage not lower than the horsepower rating of		Voltage	Full-Load Current		Allowable O tion Device Duel Element (time- delay fuse)		Wire Size *	Conduit Size (EMT) Max 3 Current Carrying Conductors	Motor Starter Size
		230V	2.2	6	6	15	14	1/2	0
		460V	1.1	3	3	15	14	1/2	0
		230V	3.2	10	6	15	14	1/2	0
		460V 230V	1.6 4.2	6 15	3 10	15 15	14 14	1/2 1/2	0
1 5 5		460V	2.1	6	6	15	14	1/2	0
the motor.	1 1/2	230V	6	20	10	15	14	1/2	0
		460V	3	10	6	15	14	1/2	0
	2	230V	6.8	20	15	20	14	1/2	0
		460V	3.4	10	6	10	14	1/2	0
	3	230V	9.6	30	20	25	14	1/2	0
		460V	4.8	15	10	15	14	1/2	0
	5	230V 460V	15.2 7.6	50 25	30 15	40 20	12 14	1/2 1/2	1
	7 1/2	230V	22	70	40	60	14	1/2	0
	, 1/2	460V	11	35	20	30	10	1/2	1
© JADELearning www.jadelearning.com	ş		î	1					112

Motors
Motor Control 430.89 Speed Limitation . Machines of the following types shall be provided with
speed-limiting devices or other speed limiting means: (1) Separately excited dc motors (2) Series motors
(2) Series motors (3) Motor-generators and converters that can be driven at excessive speed from the dc end, as by a reversal of current or decrease in load
Exception: Separate speed-limiting devices or means shall not be required under either of the following conditions:
(1) Where the inherent characteristics of the machines, the system, or
the load and the mechanical connection thereto are such as to safely limit the speed
(2) Where the machine is always under the manual control of a qualified operator
©JADELearning www.jadelearning.com 115
115

Motor Control Centers 430.94 Overcurrent Protection. Motor control centers shall be provided with overcurrent protection in accordance with Parts I, II, and VIII of Article 240. The ampere rating or setting of the overcurrent protective device shall not exceed the rating of the common power bus. This protection shall be provided by:

(1) an overcurrent protective device located ahead of the motor control center or (2) a main overcurrent protective device located within the motor control center.

116

Motors

Motor Control Centers

430.96 Grounding. Multi-section motor control centers shall be connected together, with an equipment grounding conductor or an equivalent equipment grounding bus sized in accordance with Table 250.122. Equipment grounding conductors shall be connected to this equipment grounding bus or to a grounding termination point provided in a single-section motor control center.

©JADELearning www.jadelearning.com

117

117

Rating or Setting of		Size (AWG or kcmil)	
Automatic Overcurre Device in Circuit Ahe of Equipment, Conduit, Not Exceeding (Amperes)	ad	Aluminum or Copper-Clad Aluminum*	
15	14	12	
20	12	10	
60	10	8	
100	8	6	
200	6	4	
300	4	2	
400	3	1	
500	2	1/0	
600	1	2/0	
800	1/0	3/0	
1000	2/0	4/0	
1200	3/0	250	
1600	4/0	350	

